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SUMMARY:  A finite difference based Stokes solver is developed to predict the mesoscopic 
permeability of textile reinforcements. In general, a high grid resolution is employed (either 
globally or locally) to capture the geometrical details of the reinforcement. Local grid 
refinements often result in poor aspect ratios of the elements, resulting in inaccurate results, 
whereas the computational cost of complete fine grid models is extremely high, if not too high 
for practical use. A Multigrid method is implemented to combine computational efficiency with 
accuracy. The fine grid levels allow a sufficiently accurate description of the internal geometry of 
the fabric, whereas the coarse grid levels ensure a sufficiently fast convergence for practical use 
of the solver. The Multigrid Stokes solver is validated on experimental and numerical results 
found in literature. It can be concluded that the performance of the solver is excellent, for both 
high and low fibre contents. The solver is currently being used to investigate the transverse 
permeability of fabric used for CETEX® fabric reinforced thermoplastic plates. 
 
 
KEYWORDS:  multigrid, permeability, internal geometry 
 
 

INTRODUCTION 
 
A wide variety of flow solvers to solve the resin flow through a dry fibrous preform is presented 
in the past. They are either based on analytical solutions, or employing (semi-)commercial codes. 
However, most of them are limited to a relatively basic representation of the internal geometry of 
the fabric, whereas simultaneously a development is going on to describe the internal geometry 
of a fabric in more detail [1, 2]. The latter is desirable, as higher fibre contents are applied, which 
require more detail in the models predicting the flow through dense fibre beds. As a consequence, 
the models grow in the sense of complexity, but also in terms of required computational effort. 
Applicability outside the academic world becomes virtually impossible. Simplified geometries 
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are often employed to obtain reasonable calculation times, accepting the reduced accuracy of the 
models. 
 
The Multigrid solver presented here, attempts to combine computational performance with high 
level detail in the description of the internal geometry of the fabric. This article first briefly 
describes the internal geometry of a fabric. An explanation of the Multigrid solution 
methodology follows and the article is finalized with the first results of the solver, compared to 
solution found in the literature. 
 
 

GEOMETRICAL DESCRIPTION OF FABRICS 
 
The reinforcement is modeled here at the meso–level scale that is at the typical length scale of the 
fibre bundles (~ 10-1 mm). This implies that the internal geometry of the bundle is neglected. The 
latest developments on a methodology to account for microscopic flows are presented by Grouve 
and Akkerman [3]. The meso–level solver is constructed such that functions to account for the 
micro–level flow can be implemented straightforwardly, as it is the final goal here to build a 
solver for the entire fluid domain. The three length scales (macro level for the fabric length scale) 
are shown in Fig. 1. 
 

 
 

Macro level Meso level Micro level 
 

Fig. 1  The three typical length scales as generally employed in composite modeling. 
 
The fibre bundles in reinforcement are often represented by idealized shapes, such as sinusoidal 
or elliptical shapes for example. The derivation of the geometrical functions is not of interest here, 
since the fluid flow solver is developed independently, allowing the implementation of any 
geometry descriptions. The exact geometry is never directly implemented, as will be shown in 
the following sections. The difference between the various geometrical models vanishes as a 
consequence. 
 
 

MULTIGRID METHODOLOGY AND IMPLEMENTATION 
 
The basic flow equations that are solved are the Stokes equation describing a viscous flow of an 
incompressible, Newtonian flow and the continuity equation: 
 

02 =⋅∇−∇ up μ  (1) 
0=⋅∇ u  (2) 



 

 
with p the pressure, μ the dynamic viscosity, u the fluid velocity, ∇  and 2∇  denote the gradient 
and Laplace operators respectively. This set of equations is solved iteratively employing a finite 
difference technique. An initial solution is guessed. The resulting error – or residual – compared 
to the, yet unknown, exact solution is used to estimate a correction for the initial solution. This 
procedure is repeated until the numerical solution satisfies (1) and (2) within the desired limits of 
accuracy. Finite difference methods perform best if a regular grid of cells is employed. However, 
the geometry can only be described sufficiently accurate if the resolution of the grid is high. 
Inherently, this implies a slow converges, as errors with a relative high wavelength compared to 
the typical cell edge length are damped slowly in finite difference schemes [4]: the error becomes 
smooth, as graphically represented by Fig. 2, which implies a low convergence rate. This leads to 
contradicting demands on the grid resolution: a coarse grid will translates into a fast reduction of 
the residual, whereas only a fine grid will result in an accurate solution. 
 

  
a) Smooth error b) Non–smooth error 

 
Fig. 2  Smoothness of the residual. 

 
One of the solutions to overcome this problem is to solve the equations on different grid 
resolutions: the ‘Multigrid’ method. A Multigrid routine consists of three steps: 

1. Relaxation: iterations performed on each grid. The number of iterations is limited, as the 
only objective is to obtain a smooth error. Once this is reached, the convergence rate will 
drop and the overall efficiency of the solver as well. 

2. Restriction: transfer of the solution to a coarser grid level. 
3. Prolongation: transfer of the solution to a finer grid. 

 
A linear interpolation is employed for the restriction and prolongation. The number and order of 
restriction and prolongation steps depend on the type of Multigrid cycle that is followed. Here a 
Full MultiGrid scheme (FMG) [4] is implemented (see Fig. 3). The routine starts with an initial 
velocity and pressure field at the coarsest level. The velocities and pressures are transferred to a 
finer grid after a number of pre-relaxation. The correction for the solution on the finer grid is 
improved on the coarser grid levels to damp the high and low frequency errors in the estimation 
efficiently (circles without dot in Fig. 3), after which the velocities and pressures are corrected 
and a number of post-relaxations is applied (circles with dot). This cycle is repeated until the 
desired accuracy is obtained. 
 



 

 
 

Fig. 3  A four level, three cycle full MultiGrid routine. The solution is relaxed at the circles with 
dots, whereas the correction is improved, using restriction and prolongation, on the circles 

without dots. 
 
 
A staggered grid is employed: the 
pressures are evaluated in the cell 
centres, whereas the velocities are 
evaluated at the cell edges or faces (2D 
and 3D respectively), see Fig. 4. The 
staggered grid is required to obtain a 
stable solution. It can be shown rather 
straightforwardly that mutually 
independent systems of equations will 
be formed if a non–staggered is 
employed. The flow equations are 
discretised employing a backward and 
central differential scheme. 

 
 

Fig. 4  A 2D staggered grid. The pressure is 
evaluated at the cell center, the velocities at the 

cell faces. 
 
Various types of boundaries are recognized: 

1. The domain boundaries where the pressures are prescribed (inlet and outlet). 
2. The domain boundaries where the velocities are prescribed 
3. The fibre bundle contour at which the velocities are prescribed (here set to zero, see also 

[3]). 
 

An interpolation of the prescribed velocities or pressures at the boundaries is required if the 
degree of freedom is not defined at the boundary (for example u1 at x2 = 0, see Fig. 4). A 
quadratic interpolation is employed to this end. 
 
The relaxation itself is based on a standard iterative method, in which the new estimate of a 
solution is based on the residual of current solution. However, a distinction must be made 
between the relaxation of the Stokes equation (1) and the continuity equation (2). The residual of 
the momentum equation in the x1 direction 

1Mr of the Stokes equation of the nth iteration, at the 
face [i-½,j] (see Fig. 4), reads: 
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where p are the pressures, u1 the velocities and h the grid edge length. Note that here h1 = h2 = h, 
since the grid is square. The new estimate )1(

],
2
1[,1

+

−

n

ji
u  is found by adding a correction )(,

],
2
1[,1

nC

ji
u

−
 such 

that the residual vanishes: 
 

                       )(
],[,

2
)(,

],
2
1[,1

)(,

],
2
1[,1

)(

],
2
1[,1

)1(

],
2
1[,1

1
214

n
jiM

nC

ji

nC

ji

n

ji

n

ji
rhuuuu

−−−−

+

−
−=→+=

μ
 (4) 

 
The new estimate for the velocity in the x2 direction is obtained in the same way. A slightly 
different correction is found for the cells at the domain and fibre bundle boundaries.  
 
The relaxation of the continuity equation is performed over a cell rather than on a single cell 
edge. A distributive relaxation is applied for the continuity equation. This implies that a single 
correction for the velocities at the cell edges of cell [i,j] is applied, whereas the pressure in the 
cell [i,j] as well the pressures in the neighbouring cells are corrected, as shown in Fig. 5. 
 

   
a) Interior cell b) Single boundary cell c) Double boundary cell 

 
Fig. 5  Distributive relaxation: velocities at the cell edges are corrected with a single correction, 

where as the pressures in the central cell and in its neighbouring cells are corrected 
simultaneously. 

 
The residual of the continuity equation (2) rC is employed to determine the correction on the 
velocities )(,
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nC

jiu : 
 

                                 
1

)(

]
2
1,[,2

)(

]
2
1,[,2

1

)(

],
2
1[,1

)(

],
2
1[,1

)(
],[, h

uu

h

uu
r

n

ji

n

ji

n

ji

n

ji
n

jiC

+−+−
−

+
−

=  (5) 

 
Applying the corrections as indicated in Fig. 6 and demanding the residual to vanish after the 
correction is applied leads to the following expression for the correction: 
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This second correction changes the residuals in Stokes equation, which is compensated by 
corrections on the pressures ( )(
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remain valid after the corrections are applied. The distributive relaxation differs at the cells near 
an internal or external boundary as shown in Fig. 5b and c. Note that the boundary can either be 
internal or external. 
 
 

RESULTS AND DISCUSSION 
 
The performance of a Multigrid solver in a two-dimensional domain including an impermeable, 
circular shaped obstruction (representing a fibre bundle) as shown in Fig. 6 is tested. The fibre 
bundle is assumed to be part of a regular, square packed array of fibre bundles. Hence, symmetric 
boundary conditions are applied for the velocities on the edges perpendicular to the pressure 
gradient, as shown in Fig. 7. 
 

  
a) 128 x 128 grid b) 16 x 16 grid 

 
Fig. 6  Coarse and fine grid representation of a circular bundle cross-section in a two-dimensional 
domain. The black area refers to cell in the interior of the bundle, the gray to the cells on the edge 

of the bundle and the white to the fluid domain. 
 



 

 
 

Fig. 7  Boundary conditions applied for a cell 
in a regular, square packed array of 

impermeable fibre bundles. 
 

 
The results are compared to results of similar 
exercises found in the literature. The solution 
is also compared to experimental data and a 
CFX solution. The settings of the Multigrid 
solver are presented in Table 1 and the 
properties of the fluid and domain, and the 
applied pressure gradient are presented in 
Table 2. 
 
 

 
Table 1  Iteration settings for the 
Multigrid solver as applied here 

 Table 2  Fluid and domain properties; 
applied pressure gradient 

 
 Iteration sweeps [#]  Variable unit 

Pre-relaxations 10  xp∇  -50 [Pa·m-1] 
Post-relaxations 10  μ 33·10-3 [Pa·s] 

Restriction 10  L 0.1 [m] 
Interpolation 10  n 512×512 [-] 
Coarse grid 30  Vf 0.1 - 0.725 [-] 

Number of cycles 4     
 
The resulting velocity and pressure distributions are shown in Fig. 8. The pressure gradient is 
applied in the x1 direction, which is the vertical direction in the graphs. The fibre bundle 
boundary is indicated in the first image, but also clearly recognizable in the other images. 
 

 
a) Velocity in x1 direction b) Velocity in x2 direction c) Pressure 

 
Fig. 8  Velocity and pressure calculated by the Multigrid program. 

 
The error norm of the residual and the required computation time on a single CPU (2.0GHz, 1Gb 
RAM) for three FMG simulations and three standard, single grid finite difference simulations 
(‘single grid’) are presented in Table 3. The Multigrid routine provides a significant improvement 
in terms of computational effort, while the accuracy is still well within acceptable limits. Note, 
that this implies that the inaccurate approximation of the fibre bundle geometry at the coarser 



 

grid resolutions (Fig. 6b versus 6a) hardly affects the final solution. Apparently, the error 
introduced at the coarser levels is efficiently reduced by the finer grid levels. 
 

Table 3  Performance of the Full MultiGrid routine for various grid sizes compared to the 
equivalent standard finite difference (‘single grid’) solution in terms of computation time and 

error norm of the residual. A fibre content of 0.4 was used. The coarsest grid resolution is given 
between brackets. 

 
   Full MultiGrid Single grid 

grid levels time [s] ε [-] time [s] ε [-] 
32 ×32 (8 ×8) 3 4.44 4.31 ×10-4 45.15 1.31 ×10-9 

128 ×128 (8 ×8) 5 86.72 3.96 ×10-5 631.28* 3.85 ×10-4 
512 ×512 (32 ×32) 5 1362.70 6.40 ×10-3 >80000** 7.50 ×10-4 
* maximum number of iteration of 1000 reached 
** stopped manually after 22 hrs and 8000 iterations 

 

 
 

Fig. 9  Comparison of the dimensionless permeability calculated by the Multigrid solver and 
numerical and experimental results found in the literature. 

 
The velocity field obtained and the pressure gradient applied are used to calculate the 
permeability of the flow domain. The calculated values for a wide range of fibre contents are 
compared to the numerical results obtained by Gebart [5] and Bruschke and Advani [6] and the 
experimental results of Sadiq [7]. Fig. 9 shows that the permeabilities calculated by the Multigrid 
solver correspond to the results previously obtained.  
 
 

CONCLUSIONS 
 
A Multigrid solver was implemented to predict the flow through a fibre reinforcement and hence 
the permeability. As a first step, the solver is developed to solve the flow around circular 



 

obstruction in a square domain. The strength of the Multigrid algorithm is its high convergence 
rate compared to standard finite difference schemes. However, the price of this efficiency can be 
an inadequate representation of the internal geometry of the textile reinforcement at the coarsest 
grid points. This is shown to be of little influence on the stability of the solution. Note that this 
implies that the exact description of the internal geometry may not be as important as would be 
expected. 
 
It is proven that the accuracy and CPU-calculation time are sufficiently good to continue the 
development of more complex structures and the incorporation of lower level flow phenomena. 
Research has started [3], in parallel to the development of the solver, to investigate the role of the 
micro level flow and the implementation of boundary conditions for the Multigrid solver, which 
is the next step forward. 
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